

Reusable Copper-Catalyzed Cross-Coupling Reactions of Aryl Halides with Organotins in Inexpensive Ionic Liquids

Jin-Heng Li,* Bo-Xiao Tang, Li-Ming Tao, Ye-Xiang Xie, Yun Liang, and Man-Bo Zhang*

Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China

jhli@hunnu.edu.cn; manbozhang@163.com

Received June 14, 2006

$$R' = I, Br, CI$$

$$R'Sn(n-Bu)_3 \xrightarrow{Cu_2O, P(o-tol)_3} R'$$

$$R' = R'Sn(n-Bu)_3 \xrightarrow{KF, TBAB, 125-130 \circ C} R'$$

A combination of Cu₂O nanoparticles with $P(o-tol)_3$ shows highly catalytic activity for the Stille cross-coupling reaction. A series of copper catalysts and ligands were evaluated, and Cu₂O nanoparticles combined with $P(o-tol)_3$ provided the best results. In the presence of Cu₂O nanoparticles and $P(o-tol)_3$, a variety of aryl halides including aryl chlorides underwent the Stille reaction with organotins smoothly in moderate to excellent yields using inexpensive TBAB (*n*-Bu₄NBr) as the medium. It is noteworthy that the Cu₂O/P(o-tol)₃/TBAB system can be recovered and reused at least three times without any loss of catalytic activity among the reactions of aryl iodides and activated aryl bromides.

The Stille cross-coupling reaction is an important transformation in organic synthesis because its products, in particular biarys,¹ play an important role as structural elements of many natural products and biologically active compounds as well as useful intermediates in synthetic organic chemisty.² Among these efficient Stille protocols, palladium combined with a ligand (usually a phosphine ligand) is generally employed as the catalytic system.^{2–4} However, the cost of these palladium catalysts is considerably expensive. In terms of economy, the use of cheaper metals, such as $copper^{6-8}$ and nickel,⁹ as the catalysts is an alternative strategy besides the recovery as well as reuse of the expensive palladium catalysts.² Although copper as the cocatalyst for the palladium-catalyzed Stille crosscouplings has been reported in many papers,⁴ little attention has been attracted on the use of copper as catalyst alone for the reaction.⁵⁻⁸ Moreover, many copper-mediated protocols required stoichiometric amounts of copper.5,6 Kang and co-workers first demonstrated that the Stille couplings catalyzed by 10 mol % of CuI alone were conducted smoothly in moderate to high yields with the aid of sodium chlorides.⁷ However, the scope was limited to aryl iodides and vinyl iodides, and organostannanes must be added slowly by a syringe pump to improve the yields. The other copper-catalyzed Stille methods were also focused on the activated organohalides, such as acyl chlorides,^{8a} ally bromides, proparyl bromides,^{8b} and hypervalent iodine compounds.^{8c} Thus, the development of an effective copper catalytic system extended the scope to aryl bromides, and aryl chlorides is still a challenging area. Here, we report an effective Cu₂O nanoparticles/P(o-tol)₃ catalytic system for cross-couplings of aryl halides including aryl chlorides with organotins in TBAB. Importantly, the Cu₂O/P(o-tol)₃/TBAB system can be recovered

(4) For representative papers on the use of copper as the cocatalyst for the palladium-catalyzed Stille cross-couplings, see (a) Mee, S. P. H.; Lee, V.; Baldwin, J. E. Chem. –Eur. J. 2005, 11, 3294. (b) Mazzola, R. D., Jr.; Giese, S.; Benson, C. L.; West, F. G. J. Org. Chem. 2004, 69, 220. (c) Casado, A. L.; Espinet, P. Organometallics 2003, 22, 1305. (d) Dubbaka, S. R.; Vogel, P. J. Am. Chem. Soc. 2003, 125, 15292. (e) Kim, W.-S.; Kim, H.-J.; Cho, C.-G. J. Am. Chem. Soc. 2003, 125, 15292. (e) Kim, W.-S.; Kim, Y.; Terstiege, I.; Maleczka, R. E., Jr. J. Am. Chem. Soc. 2001, 123, 3194. (g) Han, X.; Stoltz, B. M.; Corey, E. J. J. Am. Chem. Soc. 2001, 123, 3194. (g) Han, X.; Stoltz, B. M.; Corey, E. J. J. Am. Chem. Soc. 1999, 121, 7600. (h) Paterson, I.; Lombart, H.-G.; Allerton, C. Org. Lett. 1999, 1, 19. (i) Hoshino, M.; Degenkolb, P.; Curran, D. P. J. Org. Chem. 1997, 62, 8341. (j) Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C.; Liebeskind, L. S. J. Org. Chem. 1994, 59, 5905. (k) Liebeskind, L. S.; Fengl, R. W. J. Org. Chem. 1990, 55, 5359.

(5) For reviews on copper-catalyzed coupling reactions, see (a) Siemsen,
P.; Livingston, R. C.; Diederich, F. Angew. Chem., Int. Ed. 2000, 39, 2632.
(b) Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359. (c) Beletskaya, I. P.; Cheprakov, A. V. Coord. Chem. Rev. 2004, 248, 2337. (d) Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400.

(6) For representative papers on the Stille reaction mediated by stoichiometric amounts of copper catalysts, see (a) Allred, G. D.; Liebeskind, L. S. *J. Am. Chem. Soc.* **1996**, *118*, 2748 and references therein. (b) Wipf, P. *Synthesis* **1993**, 537. (c) Falck, J. R.; Bhatt, R. K.; Ye J. *J. Am. Chem. Soc.* **1995**, *117*, 5973.

(7) Kang, S.-K.; Kim, J.-S.; Choi, S.-C. J. Org. Chem. 1997, 62, 4208.
(8) For papers on the copper-catalyzed Stille reactions of the activated organohalides, such as acyl chlorides, ally bromides, proparyl bromides, and hypervalent iodine compounds, see (a) Wang, Y.; Burton, D. J. Org. Lett. 2006, 8, 1109. (b) Mohapatra, S.; Bandyopadhyay, A.; Barma, D. K.; Capdevila, J. H.; Falck, J. R. Org. Lett. 2003, 5, 4759. (c) Kang, S.-K.; Yamaguchi, T.; Kim, T.-H.; Ho, P.-S. J. Org. Chem. 1996, 61, 9082.

(9) For a representative paper on the nickel-catalyzed Stille reactions, see Powell, D. A.; Maki, T.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 510.

10.1021/jo061220j CCC: \$33.50 © 2006 American Chemical Society Published on Web 08/16/2006

⁽¹⁾ Bringmann, G.; Gunther, C.; Ochse, M.; Schupp O.; Tasler, S. In *Progress in the Chemistry of Organic Natural Products*; Herz, W., Falk, H., Kirby, G. W., Moore, R. E., Eds.; Springer: New York, 2001; Vol. 82, pp 1–293.

⁽²⁾ For reviews, see the following: (a) Hegedus, L. S. In Organometallics in Synthesis; Schlosser, M., Ed.; J. Wiley & Sons: Chichester, U.K., 2002; p 1123. (b) Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley-Interscience: New York, 2002. (c). Diederich, F.; Stang, P. J. Metal-Catalyzed Cross-coupling Reactions; Wiley-VCH: Weinheim, Germany, 1998. (d) Miyaura, N. Cross-Coupling Reaction; Springer: Berlin, 2002. (e) de Meijere, A.; Diederich, F. Metal-Catalyzed Cross-coupling Reactions; Wiley-VCH: Weinheim, Germany, 2004. (f) Wang D.-P.; Zhang, X.-D.; Liang, Y.; Li, J.-H. Chin. J. Org. Chem. 2006, 26, 19. (g) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508. (h) Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359. (i) Espinet, P.; Echavarren, A. M. Angew. Chem., Int. Ed. 2004, 43, 4704.

⁽³⁾ For very recent papers on the palladium-catalyzed Stille crosscouplings, see (a) Calo, V.; Nacci, A.; Monopoli, A.; Montingelli, F. J. Org. Chem. 2005, 70, 6040. (b) Garcia-Martinez, J. C.; Lezutekong, R.; Crooks, R. M. J. Am. Chem. Soc. 2005, 127, 5097. (c) Li, J.-H.; Liang, Y.; Wang, D.-P.; Liu, W.-J.; Xie, Y.-X.; Yin, D.-L. J. Org. Chem. 2005, 70, 2832. (d) Herve, A.; Rodriguez, A. L.; Fouquet, E. J. Org. Chem. 2005, 70, 1953. (e) Gallagher, W. P.; Maleczka, R. E., Jr. J. Org. Chem. 2005, 70, 841. (f) Su, W.; Urgaonkar, S.; McLaughlin, P. A.; Verkade, J. G. J. Am. Chem. Soc. 2004, 126, 16433. (g) Chiappe, C.; Pieraccini, D.; Zhao, D.; Fei, Z.; Dyson, P. J. Adv. Synth. Catal. 2006, 348, 68. (h) Li, J.-H.; Liang, Y.; Xie, Y.-X. Tetrahedron 2005, 61, 7289. (i) Gajare, A. S.; Jensen, R. S.; Toyota, K.; Yoshifuji, M.; Ozawa, F. Synlett 2005, 144.

TABLE 1. Screening the Optimized Reaction Conditions for	
Copper-Catalyzed Stille Cross-Coupling Reaction of	
1-Bromo-4-nitrohenzene (19) with Tributyl(nhenyl)stannane (2	a`

1a 2a 3 Entry [Cu] Ligand Ionic liquid Yield (%)* 1 CuI — TBAB 8 2 CuI $\bigcirc \bigcirc \bigcirc \lor \bigcirc \lor \bigcirc (L_1)$ TBAB 68 3 CuI $\bigcirc \bigcirc \lor \lor \lor \lor \lor (L_2)$ TBAB trace 4 CuI DABCO (L_3) TBAB 20 5 CuI Ph,PO (L_4) TBAB 72 6 CuI PPh, (L_9) TBAB 18 7 CuI PCy ₃ (L_6) TBAB 15 8 CuI P(o-tol), (L7) TBAB 30 10' CuI P(o-tol), (L7) TBAB 30 11 CuBr P(o-tol), (L7) TBAB 30 11' CuIP P(o-tol), (L7) TBAB 30 12' Cu ₂ O P(o-tol), (L7) TBAB 30 12' Cu ₂ O P(o-tol), (L7) TBAB 90 13' Cu ₂ O P(o-tol), (L7) T	$O_2N \longrightarrow Br + O_2N \longrightarrow O_$									
I Cul — TBAB 8 2 Cul \bigcap_{N} \bigcap_{L_1} TBAB 68 3 Cul \bigcap_{N} \bigcap_{L_2} TBAB trace 4 Cul DABCO (L_3) TBAB 20 5 Cul Ph, PO (L_4) TBAB 72 6 Cul PPh, (L_6) TBAB 18 7 Cul PCy3 (L_6) TBAB 15 8 Cul P(o-tol)3 (L7) TBAB 85 9 ^c Cul P(o-tol)3 (L7) TBAB 30 11 CuBr P(o-tol)3 (L7) TBAB 30 11 CuBr P(o-tol)3 (L7) TBAB 90 13 ^d Cu2O P(o-tol)3 (L7) TBAB 90 13 ^d Cu2O P(o-tol)3 (L7) TBAB 98 14 ^d Cu2O P(o-tol)3 (L7) TBAB 39 16 ^d Cu2O P(o-tol)3 (L7) TBAB 39 16 ^d Cu2O P(o-tol)3 (L7) TBAB 39 16										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Entry	[Cu]	Ligand	Ionic liquid	Yield (%) ^e				
3 Cul (L_1) 4 Cul DABCO (L_3) TBAB trace 4 Cul DABCO (L_3) TBAB 20 5 Cul Ph ₃ PO (L ₄) TBAB 72 6 Cul PPh ₃ (L ₆) TBAB 18 7 Cul PCy ₃ (L ₆) TBAB 15 8 Cul P(o-tol) ₃ (L7) TBAB 85 9 ^c Cul P(o-tol) ₃ (L7) TBAB 30 10 ^d Cul P(o-tol) ₃ (L ₇) TBAB 30 11 CuBr P(o-tol) ₃ (L ₇) TBAB 90 12 ^d Cu ₂ O P(o-tol) ₃ (L ₇) TBAB 90 13 ^d Cu ₂ O P(o-tol) ₃ (L ₇) TBAB 98 14 ^d Cu ₂ O P(o-tol) ₃ (L ₇) TBAC 39 16 ^d Cu ₂ O P(o-tol) ₃ (L ₇) TBABF ₄ 56 17 ^s Cu ₂ O P(o-tol) ₃ (L ₇) TBABF ₄ 96		1	CuI	—	TBAB	8				
N V(L_2) 4 Cul DABCO (L_3) TBAB 20 5 Cul Ph ₃ PO (L ₄) TBAB 72 6 Cul PPh ₃ (L_6) TBAB 18 7 Cul PCy ₃ (L ₆) TBAB 15 8 Cul P(o-tol) ₃ (L7) TBAB 85 9 ^c Cul P(o-tol) ₃ (L7) TBAB 30 10 ^d Cul P(o-tol) ₃ (L ₇) TBAB 30 11 CuBr P(o-tol) ₃ (L7) TBAB 90 12 ^c Cu ₂ O P(o-tol) ₃ (L7) TBAB 98 14 ^d Cu ₂ O P(o-tol) ₃ (L ₇) TBAC 39 16 ^d Cu ₂ O P(o-tol) ₃ (L ₇) TBABF ₄ 56 17 ^s Cu ₂ O P(o-tol) ₃ (L ₇) TBABF ₄ 96		2	CuI	$((L_1) $	TBAB	68				
5 Cul Ph ₃ PO (L ₄) TBAB 72 6 Cul PPh ₃ (L ₆) TBAB 18 7 Cul PCy ₃ (L ₆) TBAB 15 8 Cul P(o-tol) ₃ (L7) TBAB 85 9 ^c Cul P(o-tol) ₃ (L7) TBAB 30 10 ^d Cul P(o-tol) ₃ (L ₇) TBAB 30 11 CuBr P(o-tol) ₃ (L ₇) TBAB 30 12 ^e Cu ₂ O P(o-tol) ₃ (L7) TBAB 90 13 ^d Cu ₂ O P(o-tol) ₃ (L7) TBAB 98 14 ^d Cu ₂ O P(o-tol) ₃ (L ₇) TBAI 76 15 ^f Cu ₂ O P(o-tol) ₃ (L ₇) TBAF ₄ 56 17 ^g Cu ₂ O P(o-tol) ₃ (L ₇) TBABF ₄ 56 17 ^g Cu ₂ O P(o-tol) ₃ (L ₇) TBABF ₄ 96		3	CuI	\sim	TBAB	trace				
6 CuI PPh ₃ (L ₄) TBAB 18 7 CuI PCy ₃ (L ₆) TBAB 15 8 CuI P(o-tol) ₃ (L7) TBAB 85 9 ^c CuI P(o-tol) ₃ (L7) TBAB 30 10 ^d CuI P(o-tol) ₃ (L ₇) TBAB 30 11 CuBr P(o-tol) ₃ (L7) TBAB 90 12 ^d Cu ₂ O P(o-tol) ₃ (L7) TBAB 90 13 ^d Cu ₂ O P(o-tol) ₃ (L7) TBAB 98 14 ^d Cu ₂ O P(o-tol) ₃ (L ₇) TBAI 76 15 ^d Cu ₂ O P(o-tol) ₃ (L ₇) TBAC 39 16 ^d Cu ₂ O P(o-tol) ₃ (L ₇) TBABF ₄ 56 17 ^s Cu ₂ O P(o-tol) ₃ (L ₇) TBABF ₄ 96		4	CuI	DABCO (L ₃)	TBAB	20				
7 Cul PCy ₃ (L ₆) TBAB 15 8 Cul P(o-tol) ₃ (L7) TBAB 85 9 ^c Cul P(o-tol) ₃ (L7) TBAB 20 10^d Cul P(o-tol) ₃ (L7) TBAB 30 11 CuBr P(o-tol) ₃ (L ₇) TBAB 30 12 ^c Cu ₂ O P(o-tol) ₃ (L7) TBAB 90 13 ^d Cu ₂ O P(o-tol) ₃ (L7) TBAB 98 14 ^d Cu ₂ O P(o-tol) ₃ (L ₇) TBAI 76 15 ^f Cu ₂ O P(o-tol) ₃ (L ₇) TBAE 39 16 ^f Cu ₂ O P(o-tol) ₃ (L ₇) TBABF ₄ 56 17 ^s Cu ₂ O P(o-tol) ₃ (L ₇) TBABF ₄ 96		5	CuI	$Ph_{3}PO(L_{4})$	TBAB	72				
8 CuI $P(o-tol)_3$ (L7) TBAB 85 9 ^c CuI $P(o-tol)_3$ (L7) TBAB 20 10^d CuI $P(o-tol)_3$ (L7) TBAB 30 11 CuBr $P(o-tol)_3$ (L7) TBAB 30 12 ^e Cu ₂ O $P(o-tol)_3$ (L7) TBAB 90 13 ^d Cu ₂ O $P(o-tol)_3$ (L7) TBAB 98 14 ^d Cu ₂ O $P(o-tol)_3$ (L7) TBAI 76 15 ^f Cu ₂ O $P(o-tol)_3$ (L7) TBAC 39 16 ^f Cu ₂ O $P(o-tol)_3$ (L7) TBABF ₄ 56 17 ^e Cu ₂ O $P(o-tol)_3$ (L7) TBABF ₄ 96		6	CuI	$PPh_{3}(L_{5})$	TBAB	18				
9^c CuI $P(o-tol)_3$ (L7) TBAB 20 10^d CuI $P(o-tol)_3$ (L7) TBAB 30 11 CuBr $P(o-tol)_3$ (L7) TBAB 30 11 CuBr $P(o-tol)_3$ (L7) TBAB 90 12^c Cu ₂ O $P(o-tol)_3$ (L7) TBAB 90 13^d Cu ₂ O $P(o-tol)_3$ (L7) TBAB 98 14^d Cu ₂ O $P(o-tol)_3$ (L7) TBAI 76 15^d Cu ₂ O $P(o-tol)_3$ (L7) TBAC 39 16^d Cu ₂ O $P(o-tol)_3$ (L7) TBABF ₄ 56 17^a Cu ₂ O $P(o-tol)_3$ (L7) TBABF ₄ 96		7	CuI	$PCy_3(L_6)$	TBAB	15				
10^{d} CuI $P(o-tol)_3 (L_{\gamma})$ TBAB 30 11 CuBr $P(o-tol)_3 (L_{\gamma})$ TBAB 30 11 CuBr $P(o-tol)_3 (L_{\gamma})$ TBAB 30 12^{e} Cu_2O $P(o-tol)_3 (L_{\gamma})$ TBAB 90 13^{d} Cu_2O $P(o-tol)_3 (L_{\gamma})$ TBAB 98 14^{d} Cu_2O $P(o-tol)_3 (L_{\gamma})$ TBAI 76 15^{f} Cu_2O $P(o-tol)_3 (L_{\gamma})$ TBAC 39 16^{f} Cu_2O $P(o-tol)_3 (L_{\gamma})$ TBABF4 56 17^{s} Cu_2O $P(o-tol)_3 (L_{\gamma})$ TBABF4 96		8	CuI	$P(o-tol)_{3}(L7)$	TBAB	85				
11CuBr $P(o-tol)_3(L_{\gamma})$ TBAB30 12^e Cu_2O $P(o-tol)_3(L_7)$ TBAB90 13^e Cu_2O $P(o-tol)_3(L_7)$ TBAB98 14^e Cu_2O $P(o-tol)_3(L_7)$ TBAI76 15^e Cu_2O $P(o-tol)_3(L_{\gamma})$ TBAC39 16^e Cu_2O $P(o-tol)_3(L_{\gamma})$ TBABF456 17^e Cu_2O $P(o-tol)_3(L_{\gamma})$ TBABF496		9 ^c	CuI	$P(o-tol)_{3}(L7)$	TBAB	20				
12^{ϵ} Cu ₂ O P(o-tol) ₃ (L7) TBAB 90 $13'$ Cu_2O P(o-tol) ₃ (L7) TBAB 98 $14'$ Cu ₂ O P(o-tol) ₃ (L7) TBAI 76 $15'$ Cu ₂ O P(o-tol) ₃ (L ₇) TBAC 39 $16'$ Cu ₂ O P(o-tol) ₃ (L ₇) TBABF ₄ 56 17^{s} Cu ₂ O P(o-tol) ₃ (L ₇) TBABF ₄ 96		10^d	CuI	$P(o-tol)_3(L_7)$	TBAB	30				
$13^{s'}$ Cu_2O $P(o-tol)_3$ (L7) $TBAB$ 98 $14^{s'}$ Cu_2O $P(o-tol)_3$ (L $_7$) $TBAI$ 76 $15^{s'}$ Cu_2O $P(o-tol)_3$ (L $_7$) $TBAC$ 39 $16^{s'}$ Cu_2O $P(o-tol)_3$ (L $_7$) $TBABF_4$ 56 $17^{s'}$ Cu_2O $P(o-tol)_3$ (L $_7$) $TBABF_4$ 96		11	CuBr	$P(o-tol)_3(L_7)$	TBAB	30				
$14'$ Cu_2O $P(o-tol)_3 (L_7)$ TBAI 76 $15'$ Cu_2O $P(o-tol)_3 (L_7)$ TBAC 39 $16'$ Cu_2O $P(o-tol)_3 (L_7)$ TBABF ₄ 56 17^s Cu_2O $P(o-tol)_3 (L_7)$ TBABF ₄ 96		12 ^e	Cu ₂ O	$P(o-tol)_{3}(L7)$	TBAB	90				
$15'$ Cu_2O $P(o-tol)_3 (L_7)$ $TBAC$ 39 $16'$ Cu_2O $P(o-tol)_3 (L_7)$ $TBABF_4$ 56 17^{R} Cu_2O $P(o-tol)_3 (L_7)$ $TBABF_4$ 96		13'	Cu_2O	$P(o-tol)_3$ (L7)	TBAB	<i>9</i> 8				
$16'$ Cu_2O $P(o-tol)_3 (L_7)$ $TBABF_4$ 56 17^s Cu_2O $P(o-tol)_3 (L_7)$ $TBABF_4$ 96		14^{\prime}	Cu ₂ O	$P(o-tol)_3(L_7)$	TBAI	76				
$17^{s} Cu_{2}O \qquad P(o-tol)_{3} (L_{\gamma}) \qquad TBABF_{4} \qquad 96$		15'	Cu ₂ O	$P(o-tol)_3(L_7)$	TBAC	39				
		16 ^r	Cu ₂ O	$P(o-tol)_3(L_7)$	TBABF ₄	56				
18^{h} Cu ₂ O 10		17^{s}	Cu ₂ O	$P(o-tol)_3(L_7)$	TBABF ₄	96				
		18 ^{<i>h</i>}	Cu ₂ O	_	_	10				

^{*a*} Reaction conditions: **1a** (0.3 mmol), **2a** (0.4 mmol), copper (10 mol %), ligand (20 mol %), and KF·2H₂O (2 equiv) in ionic liquid (1.5 g) at 125–130 °C for 24 h. ^{*b*} Isolated yield. ^{*c*} TBAF (2 equiv) instead of KF. ^{*d*} K₂CO₃ (2 equiv) instead of KF. ^{*e*} Common Cu₂O (10 mol %). ^{*f*} Cu₂O nanoparticles (10 mol %) as the catalyst. ^{*s*} **1a** (3 mmol), **2a** (4 mmol), and Cu₂O nanoparticles (10 mol %) in ionic liquid (5 g). ^{*h*} Cu₂O nanoparticles (10 mol %) in NMP (1 mL).

and reused at least three times without a loss of activity in the couplings of aryl iodides and activated aryl bromides (eq 1).

$$R \xrightarrow{X} + R'Sn(n-Bu)_3 \xrightarrow{Cu_2O, P(o-tol)_3} R' \qquad (1)$$

$$X = I, Br, CI$$

$$X = I, Br, CI$$

The Stille cross-coupling reaction of 1-bromo-4-nitrobenzene (1a) with tributyl(phenyl)stannane (2a) performed in ionic liquids was conducted as a model to screen the optimized reaction conditions, and the results are summarized in Table 1. Initially, a set of ligands, including N-(2-(phenylimino)ethylidene)benzenamine (L_1), 1,10-phenanthroline (L_2), DABCO $(1,4-diaza-bicyclo[2.2.2]octane; L_3), Ph_3PO (L_4), PPh_3 (L_5),$ PCy_3 (L₆), and $P(o-tol)_3$ (L₇), were tested using CuI as the catalyst and KF as the base (entries 1-8). The results showed that $P(o-tol)_3$ (L₇) was the most effective ligand in terms of vield (entry 8). Without any ligands, treatment of 1-bromo-4nitrobenzene (1a) with tributyl(phenyl)stannane (2a), CuI, KF· 2H₂O, and TBAB at 125-130 °C for 24 h afforded the target product 3 in rather low yields (entry 1), whereas the yield of 3 was enhanced to 68% sharply when 20 mol % of L_1 was added (entry 2). A trace amount of 3 was observed using 1,10phenanthroline (L_2) as the ligand (entry 3). DABCO (L_3) , the reported effective ligand in the other copper-catalyzed crosscouplings,¹⁰ gave only 20% yield (entry 4). We were happy to find that among the phosphine ligands, employing $P(o-tol)_3 (L_7)$ as the ligand gave the highest yield of the desired product 3(85% yield; entries 5-8). The effect of the base was then examined, and KF provided better results than TBAF (n-Bu₄-NF) and K₂CO₃ (entries 8-10). A number of other copper catalysts were also evaluated (entries 11-13). It was a welcome discovery that Cu₂O, in particular Cu₂O nanoparticles,¹¹ showed higher activity than either CuI or CuBr. In the presence of 10 mol % of Cu₂O, 20 mol % of $P(o-tol)_3$ (L₇), and 2 equiv of KF, a 90% yield of **3** was obtained (entry 12). It is noteworthy that nearly a quantitative yield of the target product 3 was observed using Cu₂O nanoparticles as the catalyst (entry 13). The other inexpensive ionic liquids including TBAI (*n*-Bu₄NI), TBAC (n-Bu₄NCl), and TBABF₄ (n-Bu₄NBF₄) as the media were investigated under the optimized conditions, and they were less effective than TBAB (entries 14-16). Noteworthy is that the process is suitable for the reaction of 3 mmol of substrate 1a with 4 mmol of 2a (entry 17). A control reaction was also performed in the presence of 10 mol % of Cu₂O nanoparticles, 1 equiv of NaCl, and 1 mL of NMP at 125-130 °C for 24 h on the basis of the earlier report;⁷ however, a low yield was isolated (entry 18)

Under the optimized reaction conditions, a variety of aryl halides 1a-k were coupled with organotins smoothly to afford the corresponding products in good yields (Table 2). Moreover, the Cu₂O nanoparticles/P(o-tol)₃ (L₇)/TBAB system could be recovered and reused. As demonstrated in Table 2, the coupling of substrate 1a with 2b or 2c was carried out efficiently at 125-130 °C for 20–24 h to offer the corresponding products 4 and 5 in 89% and 94% yields, respectively, in the presence of 10 mol % of Cu₂O nanoparticles, 20 mol % of P(o-tol)₃ (L₇), 2 equiv of KF, and 1.5 g of TBAB (entries 1 and 2). To our delight, the Cu₂O nanoparticles/L₇/TBAB system could be recovered and reused at least three times without a loss of activity in the coupling of **1a** with **2c** (entry 2). After initial experimentation, the reaction mixture was extracted with cylcohexane, and the Cu₂O nanoparticles/L₇/TBAB system were then solidified (evaporated and cooled) and subjected to a second run of the coupling by charging with the same substrates and base (1a, 2c, and KF). The results of three runs showed that they were almost consistent in yields and rates (run 1, 93%; run 2, 94%; run 3, 96%). Aryl iodides 1b,c and another activated aryl bromide 1d could also undergo the recoverable and reusable process successfully (entries 3, 4, and 6). However, the catalytic activity of the reusable system was reduced in the second run of the coupling of the deactivated aryl bromide 1g with 2a (entry 11). In the first run, a 96% yield of the desired product 7 was isolated after 30 h from the reaction between 1g and 2a, whereas the yield of 7 was decreased to 55% in the second run. The activity was further contrasted to the Cu₂O nanoparticles with the common Cu₂O (entries 11 and 12). A 96% yield of 7 was isolated from the coupling between 1g and 2a using the Cu₂O nanoparticles as the catalyst, while the yield of 7 was reduced to 80% employing the common Cu₂O as the catalyst. Although the catalytic activity of the Cu₂O nanoparticles and $P(o-tol)_3$

⁽¹⁰⁾ For papers on the use of DABCO as the ligand for the other coppercatalyzed cross-couplings, see (a) Li, J.-H.; Wang, D.-P. *Eur. J. Org. Chem.* **2006**, 2063. (b) Li, J.-H.; Wang, D.-P.; Xie, Y.-X. *Tetrahedron Lett.* **2005**, *46*, 4941.

⁽¹¹⁾ Cu₂O nanoparticles were synthesized by the known procedure, see Wang, W.; Wang, G.; Wang, X.; Zhan, Y.; Liu, Y.; Zheng, C. *Adv. Mater.* **2002**, *14*, 67.

of Aryl Halides (1) with Organotins (2) in TBAB ^a								
/=	X + R'Sn(<i>n</i> -Bu) ₃ $\frac{Cu_2O, P(o-tol)_3}{KE}$ X + R'Sn(<i>n</i> -Bu) ₃ KE TRAP 425 420 KE							
R	-x + R'Sn(^{<i>n</i>-Bu)₃ KF, TBAB, ²}	125-130 °C	~ ~%	/∕—R'			
1 2 3-13								
Entry	- Aryl halide	$R'Sn(n-Bu)_3$	Recycle no.					
	O ₂ N-Br	Sn(<i>n</i> -Bu) ₃ (2b)						
1	(1a)	(20)		24	89 (4)			
			1	20	93 (5)			
2	(1a)	Ph— $=$ Sn(n -Bu) ₃ (2c)	2	20	94 (5)			
			3	20	96 (5)			
			1	11	90(6)			
3	/ (1b)	$PhSn(n-Bu)_3(2a)$	2	11	93 (6)			
			3	11	95 (6)			
			1	12	87 (7)			
	MeO		2	12	94 (7)			
4		(2a)	3	12	94 (7)			
			4	12	95 (7)			
			5	12	98 (7)			
5	(1c)	(2c)		12	90 (8)			
			1	27	88 (6)			
6	/ _/ ^b (1d)	(2a)	2	27	89 (6)			
			3	27	96 (6)			
7	(1d)	(2c)		27	91 (9)			
8	- Br (1e)	(2a)		28	107 (10)			
9	(1e)	(2c)		28	58 (11)			
	Me-Br							
10	(1f)	(2a)		29	94 (12)			
	MeO-Br		1	30	96 (7)			
11	(1g)	(2a)	2	30	55 (7)			
12°	(1g)	(2a)		30	80 (7)			
13	(1g)	(2c)		30	8 (8)			
14	0 ₂ N-CI (1h)	(2a)		48	92 (3)			
15		(2a)		60	90 (6)			
16	CI (1j)	(2a)		60	91 (10)			
17		(2a)		72	92 (13)			
18	MeO-CI (11)	(2a)		72	10 (7)			

 TABLE 2.
 Cu₂O Nanoparticles-Catalyzed Stille Cross-Couplings of Aryl Halides (1) with Organotins (2) in TBAB^a

^{*a*} Reaction conditions: **1** (0.3 mmol), **2** (0.4 mmol), Cu₂O nanoparticles (10 mol %), P(*o*-tol)₃ (**L**₇, 20 mol %), and KF·2H₂O (2 equiv) in TBAB (1.5 g) at 125–130 °C. ^{*b*}Isolated yield. ^{*c*}Common Cu₂O (10 mol %) instead of Cu₂O nanoparticles.

(L_7) system was decreased to some extent for the couplings of aryl chlorides, high yields were still achieved after prolonged reaction times (entries 14–17). For example, the bulky chloride **1k** bearing two methyl groups reacted with **2a** for 72 h to give the target product **13** in a 92% yield under the optimized reaction conditions (entry 17). Unfortunately, a low yield of the desired coupled product **7** was observed in the coupling of the deactivated chloride **1l** with **2a** after 72 h under the same conditions (entry 18).

In summary, an efficient and reusable copper-catalyzed Stille coupling protocol has been developed. The reaction showed excellent substituents on the aromatic rings tolerance. Noteworthy is that the Cu₂O nanoparticles/ $P(o-tol)_3$ /TBAB system displays exceptionally activity and extended the scope to a variety of aryl halides including less active aryl chlorides. Moreover, the Cu₂O/ $P(o-tol)_3$ /TBAB system can be recovered and reused at least three times without a loss of activity in the couplings of aryl iodides and activated aryl bromides. In addition, the present copper system is considerably inexpensive and readily available, which emerged as an attractive alternative to palladium catalysts for the Stille cross-coupling reaction. Given these advantages, efforts to extend the application of these catalytic system in organic synthesis are underway in our laboratory.

Experimental Section

Typical Experimental Procedure for the Copper-Catalyzed Stille Cross-Coupling Reaction in TBAB. A mixture of aryl halide 1 (0.3 mmol), organotin 2 (0.4 mmol), Cu₂O (nanoparticles; 10 mol %), P(o-tol)₃ (L₇; 6 mol %), KF·2H₂O (2 equiv), and TBAB (1.5 g) was stirred at 125–130 °C for the desired time until the complete consumption of the starting material as monitored by TLC. After the reaction was finished, diethyl ether was poured into the mixture. The mixture was then washed with water, extracted with diethyl ether, dried by anhydrous Na₂SO₄, and evaporated under vacuum. The residue was purified by flash column chromatography (hexane or hexane/ethyl acetate) to afford the desired coupled product.

Typical Experimental Procedure for the Reused Copper-Catalyzed Stille Cross-Coupling Reaction in TBAB. A mixture of aryl halide 1 (0.3 mmol), organotin 2 (0.4 mmol), Cu₂O (nanoparticles; 10 mol %), P(*o*-tol)₃ (L₇; 6 mol %), KF·2H₂O (2 equiv), and TBAB (1.5 g) was stirred at 125–130 °C for the desired time until the complete consumption of the starting material as monitored by TLC. After the reaction was finished, the mixture was extracted with cyclohexane (5 mL × 6) and evaporated under vacuum. The residue was purified by flash column chromatography (hexane or hexane/ethyl acetate) to afford the desired coupled product. After initial experimentation, the residue Cu₂O nanoparticles/P(*o*-tol)₃/TBAB system was then solidified (evaporated in vacuo and cooled) and subjected to a second run of the Stille reaction by charging with the same substrates (aryl halide, organotin, and KF·2H₂O).

Acknowledgment. The authors thank Scientific Research Fund of Hunan Provincial Education Department (Grant No. 05B038), the National Natural Science Foundation of China (Grant No. 20572020), Fok Ying Dong Education Foundation (Grant No. 101012), the Key Project of Chinese Ministry of Education (Grant No. 206102), and Hunan Provincial Natural Science Foundation of China (Grant No. 05JJ1002) for financial support.

Supporting Information Available: Analytical data and spectra (¹H and ¹³C NMR) for all the products **3–13**; typical procedure for the copper-catalyzed Stille reaction. This material is available free of charge via the Internet at http://pubs.acs.org.

JO061220J